• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 27.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Zellen bekämpfen Viren mit Mathematiker-Strategie

RNA-Sensoren der zellulären Immunabwehr überlistet

Wenn Mathematiker ein großes Problem lösen sollen, greifen sie oft zu einem Trick: Sie zerlegen das Problem in kleine Teilaufgaben, für die bereits Lösungen existieren. Genauso scheinen Zellen bei der Bekämpfung mancher Krankheitserreger zu verfahren. Das zeigt eine Studie, die nun in der Zeitschrift "Nature Immunology" erschienen ist. Die Ergebnisse könnten zu neuen Therapiestrategien gegen chronische Virusinfektionen und Krebs führen.
H1N1-Virus

H1N1-Virus

Viren und Bakterien hinterlassen im Körper oft auffällige Spuren. So kann bei einer Infektion Erbmaterial des Krankheitserregers freiwerden. In jeder Zelle gibt es Sensoren, die auf die Erkennung fremden Erbguts spezialisiert sind. Diese zellulären Spürhunde rufen dann die körpereigenen Abwehrtruppen auf den Plan, die den Eindringling bekämpfen. Das Erbgut von Viren besteht meist aus RNA, einer Verwandten der DNA.

Sensoren erkennen nur RNA


Die Wissenschaft kennt heute bereits viele Sensoren, die speziell RNA wahrnehmen. Bei anderen Krankheitserregern besteht das genetische Material dagegen aus DNA. Dazu zählen beispielsweise Bakterien, Protozoen wie der Erreger der Malaria, aber auch manche Viren. Das Problem dabei ist jedoch, dass RNA-Sensoren auf DNA nicht ansprechen."Dennoch löst auch Fremd-DNA eine starke Immunreaktion aus", erklärt Professor Veit Hornung von der Universität Bonn. "Wie die Zellen diese DNA erkennen, verstehen wir erst in Ansätzen."

Bislang zumindest. Denn der Immunologe Hornung konnte nun zusammen mit seinen Mitarbeitern Andrea Ablasser und Franz Bauernfeind sowie US-Kollegen der Universität von Massachussetts Licht ins Dunkel bringen. Demnach stellt die Zelle von der Erreger-DNA zunächst eine RNA-Abschrift her. Diese wird dann ihrerseits von RNA-Sensoren erkannt. Letztlich führt der Organismus das Problem "DNA-Erkennung"auf das bereits gelöste Problem "RNA-Erkennung" zurück.


Markierung identfiziert körpereigene RNA-Kopien


Dass DNA in RNA umgeschrieben wird, ist in Zellen ein ganz alltäglicher Vorgang: Im Grunde genommen ist DNA nämlich nichts anderes als eine Art Bibliothek, deren Originalschriften viel zu wichtig sind, als dass man sie entleihen könnte. Wer Informationen benötigt, kann jedoch eine Kopie
bestellen. Diese "Arbeitskopien" bestehen aus RNA. Sie enthalten eine Markierung, die sie für RNA- Sensoren gewissermaßen unsichtbar macht. Andernfalls würden sie ebenfalls eine Immunreaktion auslösen.

Wenn die Zellkopierer Fremd-DNA in RNA umschreiben, fehlt der Kopie danach jedoch diese Markierung. Die RNA-Sensoren schlagen daher Alarm und setzen damit eine Signalkette in Gang, in der schließlich der Botenstoff Alpha-Interferon ausgeschüttet wird. Das ist ein starkes Immunstimulanz, das sogar gegen Tumoren wirkt. "Eventuell eröffnet unsere Studie daher sogar neue Wege in der Krebstherapie", hofft Hornung.

Alpha-Interferon als körpereigener Krebsschutz


So wollen die Forscher eine künstliche DNA konstruieren, die eine sehr hohe Alpha-Interferon-Ausschüttung hervorruft. Diese DNA ließe sich beispielsweise in bestimmte Viren einschleusen, die spezifisch Tumorzellen befallen. Bei der Infektion injizieren Viren ihre Erbanlagen in ihr Opfer. So könnte die künstliche DNA in die Krebszellen gelangen und dort eine gezielte Immunantwort hervorrufen. Die Zellen würden gewissermaßen kontinuierlich ihr eigenes Krebsmedikament
produzieren.
(Universität Bonn, 28.07.2009 - NPO)
 
Printer IconShare Icon