• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 20.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Einzelmoleküle als elektrische Leiter

Grundlagenerkenntnis bringt viele Anwendungsmöglichkeiten

Klein und effizient: Die Verwendung von Molekülen als stromleitende Elemente in elektronischen Schaltungen birgt großes Potential. Eine der Herausforderungen bisher: Die Stromleitung durch Moleküle setzt erst ab einer gewissen Schwellspannung ein. Einem internationalen Forscherteam ist nun ein Durchbruch gelungen: Mit einer ungeraden Anzahl an Elektronen sind Moleküle, die mit Metallelektroden im Kontakt sind, nämlich schon im niedrigen Spannungsbereich extrem leitfähig.
Extrem leitfähiges Molekül

Extrem leitfähiges Molekül

Diese Grundlagenerkenntnis bringt viele Anwendungsmöglichkeiten: Etwa effizientere Mikrochips und Bauelemente mit stark erhöhten Speicherdichten, berichten die Wissenschaftler im Fachjournal „Nano Letters“.

Miniaturisierung elektronischer Bauteile rückt näher


Ein Elektron statt zwei: Ist die Anzahl der Elektronen, also der Träger der elektrischen Ladung, in einem Molekül ungerade, so wird das Molekül auch schon bei niedrigen Spannungen zum Leiter mit geringem Widerstand. Was in der Beschreibung simpel klingt, ist eine fundamentale Erkenntnis im Bereich der Nanotechnologie: Metallische Elemente in molekularen elektronischen Schaltungen können damit nämlich durch Einzelmoleküle ersetzt werden.

„Damit kommen wir der ultimativen Miniaturisierung elektronischer Bauteile einen entscheidenden Schritt näher“, erklärt Egbert Zojer vom Institut für Festkörperphysik der Technischen Universität (TU) Graz.


Moleküle statt Metall


Antrieb für diese Grundlagenforschung ist die Vision von Schaltungen, die nur mehr aus wenigen Molekülen bestehen. „Gelingt es, dass molekulare Bausteine vollständig die Rolle der verschiedenen Elemente einer Schaltung übernehmen, eröffnet sich eine Vielzahl an Anwendungsmöglichkeiten, deren ganzes Potential sich erst im Laufe der Zeit offenbaren wird; in unserer Arbeit zeigen wir den Weg zur Realisierung der elektrisch hoch leitenden Elemente“, erklärt Zojer die Tragweite der Erkenntnis.

Viele Anwendungsmöglichkeiten


Konkrete Perspektiven bieten sich nach Angaben der Forscher etwa im Bereich der molekularen Elektronik, der Sensorik oder der Entwicklung biokompatibler Grenzflächen zwischen anorganischen und organischen Materialien: Letzteres meint den Kontakt zu biologischen Systemen wie etwa menschlichen Zellen, die durch die leitenden Moleküle in biokompatibler Art mit elektronischen Schaltungen verbunden werden können.
(idw - Technische Universität Graz, 09.07.2009 - DLO)
 
Printer IconShare Icon