Anzeige
Nanotechnologie

Bessere Bauanleitung für Nanolampen

Neue Verfahren kontrollieren Größe von leuchtenden Nanopartikeln

Chemie in einer Blase: Vesikel mit verschiedenen Ausgangsstoffen tragen in ihrer Membran unterschiedliche Leuchtstoffe (a). Wenn die Bläschen verschmelzen, bilden sich rot leuchtende Nanopartikel (b). Im Transmissionselektronenmikroskop sind die Partikel als helle Punkte zu erkennen (c). © MPI für Kolloid- und Grenzflächenforschung

Für die kleinsten Lampen der Welt gibt es jetzt gleich zwei neue Bauanleitungen. Nach diesen Plänen haben Wissenschaftler Nanopartikel maßgeschneidert, die als Positionsleuchten an Zellproteinen, künftig vielleicht aber auch als Lichtquellen für Bildschirme oder für die optische Informationstechnik dienen könnten.

In mikroskopisch kleinen Membranbläschen haben die Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung Cadmiumsulfid-Teilchen hergestellt. Je nachdem, welcher ihrer Anleitungen sie folgen, können diese vier oder 50 Nanometer groß sein. Da die Membranbläschen etwa die Ausmaße von lebenden Zellen erreichen, könnte die Studie auch einen Hinweis darauf geben, wie Nanostrukturen in der Natur entstehen, so die Wissenschaftler in der Online-Ausgabe der Fachzeitschrift „Small“.

Geschlossene Reaktionsgefäße

Bei Arbeiten in kleinsten Dimensionen sind Zellen und Mikroorganismen große Meister. Wie besonders effiziente Mikrofabriken stellen sie nur wenige Nanometer, also Millionstel Millimeter, große Teilchen und Strukturen aus anorganischem Material wie etwa Kalk her.

Diese Fähigkeit könnten Zellen zwei verschiedenen Kniffen verdanken: zum einen biochemischen Hilfsmitteln, nämlich Peptiden, die den Kalk in eine gewünschte Form bringen. Zum anderen könnte ihnen dabei helfen, dass sie selbst sehr klein sind. Daher können auch die Kalkpartikel nicht unbegrenzt wachsen – wenn der Zelle das Calciumcarbonat, der Baustoff von Kalk, ausgeht, ist Schluss.

„Dass Zellen quasi ein geschlossenes Reaktionsgefäß bilden, haben wir uns zum Vorbild genommen, um Nanopartikel herzustellen“, sagt Rumiana Dimova. Ihre Arbeitsgruppe erforscht am Max-Planck-Institut für Kolloid- und Grenzflächenforschung Membranen, wie sie auch Zellen umhüllen. Aus Lecithin-Membranen, die biologischen Membranen ähneln, formen die Chemikerin und ihre Mitarbeiter rund 50 Mikrometer große Bläschen. Diese Membranbläschen – die Wissenschaftler sprechen von Vesikeln – bilden ebenso wie Zellen ein geschlossenes Reaktionsgefäß. Die Membranbläschen laden die Forscher jeweils mit einem von zwei Ausgangsstoffen für die Nanopartikel.

Anzeige

Bläschen-Cocktail unter Strom

Von hier an folgen die Wissenschaftler zwei unterschiedlichen Anleitungen. Im einen Fall stellen sie Bläschen mit beiden Ausgangsstoffen her, einmal mit Natriumsulfid und einmal Cadmiumchlorid. Die Bläschen mit den unterschiedlichen Ladungen bringen die Forscher anschließend zusammen und vereinigen jeweils zwei Vesikel zu einem größeren Bläschen – indem sie auf den Bläschen-Cocktail einen kurzen, aber sehr starken elektrischen Puls abgeben. Der Elektroschock verschmilzt die Membranen zweier benachbarter Bläschen.

In vielen Fällen vereinigen sich dabei zwei Bläschen mit unterschiedlichen Ausgangsstoffen. Diese reagieren dann zu Cadmiumsulfid, das sich in Wasser nicht löst und daher in Form von Nanopartikeln ausfällt. „Da die Ausgangsstoffe in den fusionierten Bläschen nur begrenzt vorhanden sind, wachsen die Partikel nur, bis sie vier Nanometer groß sind“, erklärt Dimova.

Leuchtende Nanopartikel

Den ganzen Prozess konnten die Wissenschaftler im Mikroskop gut verfolgen, weil sie in die Membranen der unterschiedlich beladenen Vesikel verschiedene Leuchtstoffe einbauten. Und auch die Nanopartikel sahen die Forscher heranwachsen, weil die Teilchen wie kleine Lampen leuchten.

Wie Luftballone an Schnüren

In ihrem zweiten Verfahren stellen die Forscher nur Bläschen mit einem der Ausgangsstoffe her. Nachdem sich die Bläschen gebildet haben, nehmen die Wissenschaftler sie anders als im ersten Prozedere nicht aus der Reaktionskammer. Stattdessen bleiben die Bläschen über kleine Membrankanäle wie Luftballone an Schnüren mit ihrer Unterlage verbunden und stehen dabei in derselben Lösung, die sie auch in ihrem Inneren enthalten.

Das ändern die Forscher um Dimova aber schon bald: Sie tauschen die Lösung mit der ersten Zutat für die Nanopartikel gegen eine mit dem zweiten Bestandteil aus. Im Inneren der Bläschen ändert sich dabei aber zunächst nichts. Nur allmählich kriecht die zweite Zutat zwischen Membran und Unterlage in den Kanal zu dem Bläschen. Im Bläschen, wo die andere Zutat schon wartet, wachsen dann wieder die Nanopartikel – diesmal bis zu einer Größe von 50 Nanometern.

Keine Hilfe nötig

„Mit unserer Methode haben wir erstmals in Vesikeln, die der Größe der Zellen entsprechen, Partikel mit einem bestimmten Durchmesser hergestellt“, sagt Dimova. Auch vorher haben Wissenschaftler schon Nanopartikel in Membranbläschen hergestellt. Die Membranbläschen waren mit einigen Nanometern Durchmesser aber sehr viel kleiner als die Mikrobläschen der Potsdamer Forscher und auch viel kleiner als biologische Zellen.

Nicht zuletzt deshalb dachten Biologen, Zellen seien bei der Synthese von Nanopartikeln auf die Hilfe von Peptiden angewiesen. Doch es geht auch ohne, wie Dimova und ihre Mitarbeiter festgestellt haben.

(MPG, 17.06.2009 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

NAchglühen von GRB 221009A

Rekord-Ausbruch überrascht Astronomen

Neue fossile Riesenschlange entdeckt

Warum Chinas Großstädte absinken

Landschaft unter dem Thwaites-Gletscher kartiert

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

Bücher zum Thema

Nanotechnologie für Dummies - Spannende Entdeckungen aus dem Reich der Zwerge von Richard D. Booker und Earl Boysen

Welt der Elemente - von Hans-Jürgen Quadbeck- Seeger

Das Wunder des Lichts - DVD der BBC

Faszination Nanotechnologie - von Uwe Hartmann

Die chemischen Elemente - Ein Streifzug durch das Periodensystem von Lucien F. Trueb

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Top-Clicks der Woche