• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 29.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

„Schalter" für Gefäßwachstum identifiziert

Wachstum von Blutgefäßen wird durch einen Rezeptor beeinflusst

Blutgefäße sind für unseren Körper überlebenswichtig, bei Krebs jedoch liefern sie ausgerechnet dem „Feind“ – dem Tumor – wertvolle Nährstoffe. Jetzt haben Wissenschaftler einen "An- und Ausschalter" des Gefäßwachstums identifiziert und damit die Voraussetzung geschaffen, um gezielt das Wachstum der Gefäße zu manipulieren.
Blutgefäße

Blutgefäße

An Beispielen wie Schlaganfall oder Herzkranzgefäßerkrankungen lässt sich leicht erkennen, wie wichtig die Transportfunktion von Blutgefäßen für unsere Gesundheit ist. Forscher suchen daher seit Jahrzehnten nach Möglichkeiten, die Neubildung von Gefäßen und damit auch die Reparatur von Organschäden gezielt anzuregen. Umgekehrt gibt es aber auch unerwünschte Effekte durch die Bildung neuer Blutgefäße, die beispielsweise die Ausbreitung von Krebserkrankungen fördern oder bei Diabetikern zum Verlust des Sehvermögens führen können. Die Therapie verschiedener Krankheiten erfordert daher ein Verfahren mit dem Neuverzweigungen im Gefäßnetzwerk je nach Bedarf stimuliert oder blockiert werden können.

Schalter identifiziert


Den Forschern des Max-Planck-Instituts für molekulare Biomedizinin in Münster ist es nun erstmals gelungen, einen "An- und Ausschalter" des Gefäßwachstums zu identifizieren. Der "Schalter" ist ein Rezeptor mit dem Namen ‚Notch', der auf der Oberfläche der Blutgefäßzellen, so genannter Endothelzellen, sitzt. An diesen Rezeptor können verschiedene Oberflächenproteine andocken, die den "Schalter" entweder auf "Ein" oder auf "Aus" stellen. Ist die Zelle "eingeschaltet", ist sie für den Wachstumsfaktor VEGF empfänglich, der den "Befehl" zur Zellteilung und damit zum Wachstum einer neuen Ader führt.

Die einzelnen Komponenten dieses biochemischen Mechanismus waren bereits bekannt. Den Notch-Rezeptor (Schalter), das Oberflächenprotein Delta-like 4, kurz Dll4 (Aus), und den Wachstumsfaktor VEGF (Befehl zur Zellteilung) kannten die Forscher bereits aus früheren Experimenten. Auch das Protein ‚Jagged1', das den "Schalter" auf die Position "Ein" bewegt, war bekannt. Es handelt sich dabei ebenfalls um ein Oberflächenprotein, also ein Eiweiß, das auf der Außenseite der Zellen sitzt und in Kontakt zu Notch-Rezeptoren benachbarter Zellen treten kann.


Zusammenspiel erst jetzt verstanden


"Wir haben jetzt erstmals verstanden, wie diese einzelnen Komponenten zusammen wirken. Dass das Protein Jagged1 in dem Zusammenhang als "Einschalter" wirkt, ist eine völlig neue Erkenntnis. In anstehenden Versuchen an Mäusen wollen wir lernen, das Gefäßwachstum, ähnlich wie es in Zukunft einmal Medikamente beim Menschen leisten könnten, aktiv zu steuern", erklärt Professor Dr. Ralf H. Adams.

Die Hemmung des Wachstumsfaktors VEGF (engl. ‘Vascular Endothelial Growth Factor') wird bereits seit einigen Jahren bei der Behandlung von Krebspatienten und bestimmten Augenerkrankungen eingesetzt. Leider ist diese Therapie sehr teuer und nur bei einem Teil der Patienten erfolgreich. "Da VEGF auch die Durchlässigkeit von Gefäßen erhöht und dadurch zu Blutungen führt, kann dieser Faktor nicht zur therapeutischen Förderung des Gefäßwachstums eingesetzt werden. Mit der Aufklärung der Funktion von Jagged1 hoffen wir, nun eine echte Alternative für zukünftige Therapieansätze gefunden zu haben", ergänzt Rui Benedito, Zellbiologe der Abteilung Gewebebiologie und Morphogenese am Max-Planck-Institut.

Verträglichkeit muss gerpüft werden


"Neben der Wirksamkeit wird aber auch die Verträglichkeit dieses Ansatzes zunächst gründlich geprüft werden müssen", erläutern Adams und Benedito und warnen damit zugleich vor übertriebener Hoffnung auf baldige Therapieansätze. "Notch, Dll4 und Jagged1 haben auch in anderen Organen und Zelltypen wichtige Aufgaben. Das macht eine Beschränkung der Wirkung auf Blutgefäßzellen anspruchsvoll. Wir hoffen dennoch, dass unsere Arbeit zur Entwicklung neuer Medikamente führen wird."

Die Studie erfolgte in Zusammenarbeit mit Professor Dr. Achim Gossler (Medizinische Hochschule Hannover) und war von Rui Benedito und Ralf Adams bei Cancer Research UK in London vor ihrem Umzug nach Münster (2008) begonnen worden. Die ausgezeichneten Arbeitsbedingungen am Max-Planck-Institut und die enge Zusammenarbeit mit der Westfälischen Universität Münster nennt Adams als wichtige Faktoren für die erfolgreiche Forschungsarbeit seiner Gruppe.
(MPG, 12.06.2009 - NPO)
 
Printer IconShare Icon