• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 29.08.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Planeten im Gleichtakt

Entstehung von extrasolaren Planetensystemen erforscht

Unter den mehr als 180 Planeten um sonnenähnliche Sterne, die Wissenschaftler bisher außerhalb unseres Sonnensystems entdeckt haben, sind 18 echte Planetensysteme. Bei ihnen umkreisen mindestens zwei Planeten einen sonnenähnlichen Mutterstern. Unter diesen Mehrfachsystemen gibt es nun solche, bei denen die Umlaufperioden zweier Planeten um ihren Mutterstern genau im Verhältnis zweier ganzer Zahlen stehen. Die Umlaufbahnen sind unter diesen Bedingungen besonders stabil. Bei vier Systemen ist die Umlaufzeit des äußeren Planeten exakt zweimal so lang wie die des inneren, man spricht von einer 2:1-Resonanz. Wie solche extrasolaren Planetensysteme entstehen, haben jetzt Wissenschaftler der Universität Tübingen herausgefunden. Sie berichten über ihre Ergebnisse in der Fachzeitschrift Astronomy & Astrophysics.
Zwei Planeten in der Mitte einer protoplanetaren Scheibe

Zwei Planeten in der Mitte einer protoplanetaren Scheibe

In unserem Sonnensystem kommt eine echte Resonanzbedingung zwischen zwei Planeten nur bei Neptun und Jupiter vor, die in einer 3:2-Resonanz verbunden sind, wobei sich Pluto zu bestimmten Zeiten innerhalb der Neptunbahn bewegt. Resonante Konfigurationen von Planetensystemen sind deswegen so interessant, weil sie durch einen Wanderungsprozess (Migration) der Planeten im System, bei dem sich deren Abstände vom Stern ändern, verursacht werden müssen.

Ihre Bahnen im System haben danach eine spezielle Orientierung, denn das System wäre instabil, wenn sich die Planeten zu nahe kommen würden. Die Migration geschieht bei den extrasolaren Planeten wahrscheinlich durch die Wechselwirkung des jungen Planeten mit der so genannten protoplanetaren Scheibe, aus der er entstanden ist. Die protoplanetare Scheibe, die aus Gas und Staub besteht, umgibt bereits den jungen Mutterstern. Diese Staubteilchen können aneinander stoßen, haften bleiben und zu größeren Brocken anwachsen, aus denen die Planeten entstehen.

Bei dem zuerst entdeckten und bekanntesten extrasolaren System dieser Art, GJ 876, umkreisen zwei Planeten den Stern genau in einer 2:1 Resonanz, wobei die Umlaufzeiten etwa 30 und 60 Tage betragen. Aus Stabilitätsgründen sind die sternnächsten Positionen der Bahnen, die Periapsen, bei GJ 876 immer exakt ausgerichtet. Verbindet man in den Planetenbahnen jeweils den sternnächsten und den sternfernsten Punkt mit einer Linie, der so genannten Apsidenlinie, so stellt man fest, dass beide Linien immer in die gleiche Richtung zeigen (Apsiden-Resonanz).


Streuprozesse für Vielfalt der extrasolaren Planeten wichtig


Mögliche Entstehungsszenarien für solche Systeme wurden in den letzten Jahren intensiv in Tübingen in der Arbeitsgruppe von Kley untersucht. Er hat sich nun in einem gemeinsamen Projekt mit dem ungarischen Gastwissenschaftler Zsolt Sandor auf das System HD 128311 konzentriert, bei dem sich die Planeten ebenso in einer 2:1 Resonanz befinden. Im Gegensatz zu GJ 876 zeigen die Apsidenlinien der Planeten im System HD 128311 jedoch nicht immer in die gleiche Richtung. Berechnungen der Forscher hatten ergeben, dass es bei den Planeten nach einer Wanderung in der protoplanetaren Scheibe und der Entstehung einer Resonanz theoretisch immer auch zu einer Apsiden-Resonanz kommen müsste. Was konnte im System HD 128311 passiert sein?

Die Wissenschaftler haben drei verschiedene Szenarien untersucht, die zu einer Brechung der Apsiden-Resonanz geführt haben könnten: Erstens ein plötzlicher Stopp der Wanderung des Planeten in der protoplanetaren Scheibe, zum Beispiel verursacht durch eine innere Lücke in der Scheibe, zweitens die Wechselwirkung des Planeten mit einem inneren Planeten kleiner Masse oder drittens mit einem kleinen äußeren Planeten.

Die Rechnungen ergaben, dass solche Störungen in manchen Fällen tatsächlich ausreichen, um die Resonanz zu brechen, aber nicht in allen. Auf jeden Fall ist es, so die Wissenschaftler, möglich, die Exzentrizitäten der beiden Planeten so zu verändern, dass diese den Beobachtungen am Planetensystem HD 128311 sehr ähnlich sehen. Die Rechnungen zeigen, dass plötzliche, impulsartigen Vorgänge (Streuprozesse) für die Erzeugung der Vielfalt der beobachteten extrasolaren Planeten eine große Bedeutung haben.
(idw - Universität Tübingen, 13.06.2006 - DLO)
 
Printer IconShare Icon