• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 14.11.2018
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Organisches rein und CO2 raus

Was passiert mit dem Kohlenstoff im Boden?

Humus und anderes organisches Material im Boden besteht etwa zur Hälfte aus Kohlenstoff. Diese angereicherten Bodenschichten sind letzlich das, was den Boden fruchtbar macht. Denn Böden mit einem hohen Gehalt an organischer Substanz können mehr Nährstoffe und Wasser speichern und an Pflanzen abgeben als humusärmere Böden. Mit ihrer bessere Bodenstruktur verhindern sie, dass Nähr- und Schadstoffe sofort ins Grundwasser ausgewaschen werden. Für die Entwicklung nachhaltiger Strategien in der Landwirtschaft spielt die organische Bodensubstanz daher schon seit langem eine wichtige Rolle.

Wichtigste Kohlenstoffflüsse und Umsetzungen im Boden

Aber der Boden ist auch eine Treibhausgas-Schleuder. Denn Bakterien und Pilze bauen die organischen Kohlenstoffverbindungen ab und setzen den Kohlenstoff im Laufe der Zeit als gasförmiges CO2 wieder frei. Diese Zersetzungsprozesse gehören zu den wichtigsten natürlichen Quellen des Treibhausgases. Jährlich steigt aus den Böden etwa zehnfach mehr CO2 in die Atmosphäre, als bei der Verbrennung fossiler Energieträger frei wird. Diese Menge unterliegt starken natürlichen Schwankungen, aber auch Landnutzung und Umweltänderungen beeinflussen sie. Wissenschaftler erforschen deshalb die Rolle der Böden in globalen Kohlenstoffkreisläufen seit etwa zwei Jahrzehnten verstärkt.

Die Abbaukette: Von der Pflanze zum CO2


Der wichtigste Lieferant für den Bodenkohlenstoff sind Pflanzen. Abgestorbene Pflanzenteile wie Blätter, verdorrte Stängelteile oder Baumrinde, gelangen in den Boden. Dort werden sie von Bodenorganismen über komplexe Nahrungsnetze zu Bodenkohlenstoff ab- und umgebaut. Als Folge entstehen Humus, Torf oder andere organische Materialien. Den nächsten Schritt in der Abbaukette des Bodenkohlenstoffs, übernehmen vor allem die Mikroorganismen. Im Rahmen der Mineralisation zersetzen sei das organische Material weiter zu CO2.

Boden im Anschnitt - die dunkleren oberen Schichten enthalten mehr organische Substanzen

Boden im Anschnitt - die dunkleren oberen Schichten enthalten mehr organische Substanzen

Bis heute ist aber nicht klar, warum ein Teil des Kohlenstoffs im Boden schnell umgesetzt wird, während ein anderer für Jahrzehnte bis Jahrtausende im Boden verbleibt. Lange Zeit hat man angenommen, dass die Molekülstrukturen mancher Kohlenstoffverbindungen schwerer abbaubar sind als andere. Sie bleiben dadurch übrig und es kommt so zu einer selektiven Anreicherung dieser Verbindungen.

Inzwischen halten Forscher vor allem zwei Faktoren für die Anreicherung des Kohlenstoffs im Boden für verantwortlich: Zum einen sind manche Moleküle für die abbauenden Organismen und ihre Enzyme tatsächlich nur begrenzt zugänglich und können daher nicht oder nur sehr langsam abgebaut werden. Analysen am MPI für Biogeochemie haben beispielsweise ergeben, dass Böden, in denen ein großer Teil des Kohlenstoffs an Minerale gebunden vorliegt, weniger CO2 freisetzen. Damit spielt auch die Mineralzusammensetzung des Bodens eine besondere Rolle für die Kohlenstoffspeicherung.

Zum anderen aber kann auch ein Mangel an Nährstoffen oder Energiequellen das Wachstum der abbauenden Mikroorganismen beschränken. Dann fehlt es einfach an Bakterien, die den Humus zersetzen und deshalb wird weniger CO2 frei.
 
Printer IconShare Icon