• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 18.11.2018
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Der Rockeskyller Kopf als Forschungsobjekt

Der zeitlichen Entwicklung von Vulkankomplexen auf der Spur

Zeugen der ersten vulkanischen Aktivität im Vulkankomplex Rockeskyller Kopf

Wissenschaftler um B. Alan Woodland, Professor für physikalisch-chemische Mineralogie der Universität Frankfurt und Cliff S. J. Shaw, Gastproifessor am Institut für Geowissenschaften der Universität erforschen den Eifel-Vulkanismus und seine Geschichte. Ein Ziel ihrer Forschung in der Eifel ist es, die zeitliche Entwicklung von Vulkankomplexen zu dokumentieren. Diese Untersuchungen liefern wichtige Informationen über die Dynamik des Magma-Liefersystems in der Tiefe. Der Rockeskyller Kopf, ein paar Kilometer nördlich von Gerolstein, ist einer der größten Vulkankomplexe in der West-Eifel und ist aufgrund der zahlreichen Steinbrüche für ihre Forschung gut geeignet.

Der Vulkankomplex Rockeskyller Kopf hat sich über drei Ausbruchsphasen gebildet. Die ersten vulkanischen Ablagerungen sind Pyroklastika. Das sind Auswürfe des Vulkans bei einer explosiven Eruption. Sie sind reich an Nebengesteinsfragmenten unterschiedlicher Größe und weisen auf eine Serie von explosiven Eruptionen mit Maar-Charakter hin.

„Olivinbomben“ aus dem Erdmantel


Olivinbombe

Olivinbombe

In diesen Schichten findet man auch sogenannte „Olivinbomben“, die aus mehr als 30 Kilometern Tiefe aus dem Erdmantel kommen. Diese Fremdkörper oder Xenolithe hat das aufsteigende Magma von der Kanalwand abgerissen und bis zur Oberfläche mitgeschleppt. Solche Vorkommen sind ein Beweis dafür, dass das Magma auch vom Erdmantel stammt und durch partielles Aufschmelzen von Mantelgesteinen entstanden ist.

Solche Funde sind auch ein Hinweis dafür, dass das Magma direkt aus dem Mantel gekommen sein muss und sich nicht lang in einer Kammer in der Erdkruste aufgehalten haben kann. Denn Xenolithe lösen sich in weniger als ein paar Tagen im umgebenden Magma auf, da zwischen beiden kein chemisches Gleichgewicht besteht. Diese chemische Wechselwirkung untersuchen wir im Millimetermaßstab im Labor, um die Kontaktzeit und Aufstiegsdauer des Magmas eingrenzen zu können.

Wie alt sind die vulkanischen Ablagerungen?


Auf dem Weg nach oben fängt das Magma zu kristallisieren an. In den Ablagerungen findet man Pyroxen-Kristalle (ein Kalzium-Eisen-Magnesium-Silikat) und dunklen Glimmer (Biotit). Professor Jens
Hopp, ein Kollege von der Universität Heidelberg, hat ein Kristallisationsalter von etwa 480.000 Jahren bestimmt. Zugrunde liegt die sorgfältige Analyse der Argon-Isotopenzusammensetzung in einer Glimmerprobe.

Gröbere Kristallfragmente der gleichen Mineralien treten auch in bestimmten Ablagerungsschichten auf. Bei einem ein Zentimeter großen Kristall dunklen Glimmers ergab sich ein Alter von circa 640.000 Jahren. Er ist damit deutlich älter als die feineren Glimmerkristalle aus der Lava. Offenbar gab es ein früheres Stadium von Magmabewegung unter dem Rockeskyller Kopf, das in der Tiefe durch Kristallisation stecken geblieben ist. Erst etwa 160.000 Jahre später kam es zum vulkanischen Ausbruch auf die Erdoberfläche.
Alan B. Woodland und Cliff S. J. Shaw / Forschung Frankfurt
Stand: 13.03.2009
 
Printer IconShare Icon