• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 23.09.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Künstliche Moleküle

Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Eine neue Methode erlaubt es Wissenschaftlern der ETH Zürich und von IBM, aus verschiedenen Arten von Mikrokügelchen künstliche Moleküle herzustellen. Solche winzige Objekte möchten die Forschenden dereinst für Mikroroboter, in der Photonik sowie der biochemischen Grundlagenforschung verwenden.
Wissenschaftler der ETH Zürich und des IBM-Forschungszentrums in Rüschlikon entwickelten eine neue Technik, mit der sie erstmals komplex aufgebaute winzige Objekte aus Mikrokügelchen herstellen können. Diese Objekte sind wenige Mikrometer klein und modular aufgebaut. Sie können gezielt so konstruiert werden, dass Teilbereiche unterschiedliche physikalische Eigenschaften aufweisen.

Außerdem ist es sehr einfach, die Mikroobjekte nach der Herstellung in Lösung zu überführen. Damit unterscheidet sich die neue Technik wesentlich von Mikro-3D-Druckverfahren. Mit den meisten heutigen Mikro-3D-Druckverfahren lassen sich nur Objekte herstellen, die aus einem Material bestehen, einheitlich aufgebaut sind und bei der Produktion an eine Oberfläche gebunden sind.

Um die Mikroobjekte herzustellen, verwenden die ETH- und IBM-Forscher als Grundbausteine Kügelchen aus Kunststoff oder Siliziumdioxid mit einem Durchmesser von rund einem Mikrometer und unterschiedlichen physikalischen Eigenschaften. Diese Partikel können die Wissenschaftler kontrolliert in gewünschter Geometrie und Reihenfolge anordnen.

Die so hergestellten Gebilde besetzen eine interessante Nische der Größenskala: Sie sind viel größer als typische chemische oder biochemische Moleküle, jedoch viel kleiner als typische Objekte der makroskopischen Welt.

"Je nach Sichtweise könnte man von Riesenmolekülen oder von Mikroobjekten sprechen", sagt Lucio Isa, Professor für Grenzflächen, weiche Materie und Assemblierung an der ETH Zürich. Er leitete das Forschungsprojekt gemeinsam mit Heiko Wolf, Wissenschaftler bei IBM Research. "Bisher ist es noch keinen Wissenschaftlern gelungen, bei der Herstellung von künstlichen Molekülen auf der Mikroskala die Abfolge der Einzelkomponenten komplett zu kontrollieren", so Isa.

Vielfältige Anwendungsmöglichkeiten


Herstellen lassen sich mit der neuen Methode etwa Mikroobjekte mit präzise definierten magnetischen, nicht-magnetischen und unterschiedlich geladenen Bereichen. Derzeit können die Wissenschaftler Stäbchen in unterschiedlicher Länge und Zusammensetzung, winzige Dreiecke und erste, einfach aufgebaute dreidimensionale Objekte erstellen.

Die Forschenden möchten die Technik jedoch weiterentwickeln. Für mögliche künftige Anwendungen denken sie an selbstangetriebene Mikrovehikel, die sich dank einer ausgeklügelten Geometrie und Materialzusammensetzung in einem externen elektrischen oder magnetischen Feld vorwärtsbewegen.

Ebenfalls denkbar sind Mikromixer für Lab-on-a-Chip-Anwendungen oder in ferner Zukunft sogar Mikroroboter für biomedizinische Anwendungen, die andere Mikroobjekte greifen und transportieren können. Außerdem könnten die Forscher ihre künstlichen Moleküle so konzipieren, dass sie miteinander wechselwirken und sich selbständig zu grösseren «Superstrukturen» zusammenfinden. Das wäre beispielsweise anwendbar auf die Photonik (auf Licht basierende Signalverarbeitung). «In der Photonik werden massgeschneiderte Mikrostrukturen benötigt. Diese könnten dereinst mit unseren Bauteilen hergestellt werden», sagt Isa.

Herstellung mit Mikroschablonen


Um jeweils eine große Menge von identischen Mikroobjekten herzustellen, nutzen die Wissenschaftler Polymerschablonen mit eingravierten Vertiefungen in Form des gewünschten Objekts. Die Forschenden entwickelten eine Methode, mit der sie pro Arbeitsschritt jeweils ein Kügelchen pro Vertiefung deponieren können. Schritt für Schritt können sie so grössere Objekte aufbauen, wobei sie für jeden Schritt die Kügelchenart wählen können. Zum Schluss verbinden sie die Kunststoffkügelchen durch kurzes Erhitzen miteinander.

Beim derzeitigen Entwicklungsstand sind die Kügelchen fest miteinander verbunden. In Zukunft möchten die Forscher jedoch versuchen, die Kügelchen beweglich miteinander zu verbinden. Damit könnten die Objekte als Grossmodelle für chemische und biochemische Verbindungen dienen, beispielsweise um die Proteinfaltung experimentell zu studieren. Zudem möchten die Forschenden versuchen, die Objekte mit Kügelchen aus anderen Materialen als Kunststoff oder Siliziumdioxid zusammenzusetzen. «Im Prinzip lässt sich unsere Methode auf jedes Material anpassen, auch auf Metalle», so Isa.
(Eidgenössische Technische Hochschule Zürich (ETH Zürich), 04.04.2016 - NPO)
 
Printer IconShare Icon