• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 12.12.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Kompakte, optische Datenübertragung

Karlsruher Institut für Technologie

Um Daten schneller und energieeffizienter zwischen elektronischen Chips auszutauschen, sind kompakte optische Übertragungsmöglichkeiten von großem Interesse. Ein Bauteil dazu ist der Mach-Zehnder-Modulator (MZM), der elektronische in optische Signale konvertieren kann. Forscher des KIT und der ETH haben nun einen plasmonischen MZM mit nur 12,5 Mikrometern Länge entwickelt, der digitale elektrische in optische Signale mit einer Rate von bis zu 108 Gigabit pro Sekunde konvertiert, und diesen im Fachmagazin Nature Photonics vorgestellt.
„Gerade bei der Übertragung von Daten zwischen Computerchips bieten optische Technologien ein enormes Potential“, erklärt Manfred Kohl vom KIT. In dem von ihm geleiteten EU-Projekt NAVOLCHI, Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection, wurde der plasmonische Modulator (ein elektrooptischer Wandler) entwickelt, der dem aktuellen MZM zugrunde liegt. „Kompakte, optische Sende- und Empfangseinheiten könnten die Geschwindigkeitsgrenzen heutiger Elektronik durchbrechen und helfen die Engpässe in den Datenzentren abzuschaffen.“

Zehntel der Dicke eines Haares


In der aktuellen Veröffentlichung wird ein MZM vorgestellt, der nur 12,5 Mikrometer lang ist, also etwa ein Zehntel der Dicke eines Haares. Er besteht aus zwei Armen, in denen sich je ein elektro-optischer Modulator befindet. Jeder Modulator besteht aus einem Metall-Isolator-Metall-Wellenleiter mit einem rund 80 Nanometer breiten mit elektro-optischem Kunststoff gefüllten Spalt und Gold-Seitenwänden, die zugleich als Elektroden funktionieren. An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der elektro-optische Kunststoff ändert seinen Brechungsindex in Abhängigkeit von der Spannung. Wellenleiter und Koppler aus Silizium führen die beiden Anteile eines aufgespaltenen Lichtstrahls zu den Spalten oder davon weg.

Die Lichtstrahlen der Wellenleiter regen im jeweiligen Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an. Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Die Modulation erfolgt in beiden Spalten unterschiedlich aber kohärent, da dieselbe Spannung mit unterschiedlicher Polung angelegt wird. Nach Durchlaufen der Spalte treten die Oberflächenwellen zunächst als modulierte Lichtstrahlen in die Ausgangs-Lichtwellenleiter ein und werden danach überlagert. Als Ergebnis erhält man einen Lichtstrahl in dessen Stärke die digitale Information codiert wurde.

Datenverkehr wächst exponentiell


Im Experiment arbeitet der MZM zuverlässig im gesamten Spektralbereich der Breitband-Glasfaser-Netzwerke von 1500 – 1600 Nanometer bei einer elektrischen Bandbreite von 70 Gigahertz mit Datenströmen von bis zu 108 Gigabit pro Sekunde. Die hohe Modulationstiefe folgt aus der hohen Fertigungsgenauigkeit der Silizium-Technologie. Der MZM lässt sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren.

Derzeit werden in Deutschland rund 10 Prozent des Stromes durch Informations- und Kommunikationstechnologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern. (Nature Photonics, 2015; doi: 10.1038/nphoton.2015.127)
(Karlsruher Institut für Technologie, 28.07.2015 - AKR)
 
Printer IconShare Icon