Anzeige
Energie

Ladungsstau in der Solarzelle

Max-Planck-Institut für Polymerforschung

Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Wissenschaftlern aus der Schweiz und aus Spanien die Wirkungsweise eines neuartigen Typs von Solarzellen untersucht, bei denen eine organisch-anorganische Perowskit-Verbindung die lichtabsorbierende Schicht bildet. Diese Zellen können mit einfachsten Mitteln kostengünstig hergestellt werden. Im Vergleich dazu sind etablierte Solarzellen aus Silizium in der Herstellung energieaufwändig und teuer.

Mittels Kelvinsondenmikroskopie beobachteten die Mainzer Forscher um Dr. Rüdiger Berger und Dr. Stefan Weber den Ladungstransport in einer beleuchteten Solarzelle. Dabei stellten sie fest, dass sich an einer bestimmten Stelle in der Solarzelle die positiv geladenen Ladungsträger stauen, ähnlich wie an einer Engstelle auf der Autobahn. Wollen viele Autos auf einmal daran vorbei fließen, wird der Verkehr unweigerlich langsamer oder gerät ins Stocken. Durch diese Erkenntnisse könnten Perowskitsolarzellen bald schon Effizienzen erreichen, die mit denen handelsüblicher Solarzellen vergleichbar sind. Die Mainzer haben ihre Ergebnisse nun in der Fachzeitschrift Nature Communications veröffentlicht.

Licht reißt Löcher in Atome

Die Perowskit-Solarzellen aus dem Labor der Schweizer Wissenschaftler um Prof. Dr. Michael Grätzel besitzen in der Mitte eine Schicht einer organisch-anorganischen Verbindung, die in der kubischen Perowskit-Struktur kristallisiert. „Diese Strukturen absorbieren sehr gut Licht“, erklärt Rüdiger Berger die Funktionsweise der Solarzelle. „Das von der Perowskitschicht absorbierte Licht entreißt einem Atom ein Elektron; zurück bleibt eine positiv geladene Fehlstelle, die wir auch „Loch“ nennen. Jetzt müssen wir nur noch die Elektronen zur einen und die Löcher zur anderen Elektrode bringen und fertig ist die Solarzelle.“ In der Solarzelle sitzt der Perowskit-Film daher auf einer nanostrukturierten Schicht aus Titandioxid, das die unter Beleuchtung erzeugten Elektronen einsammelt und zur unteren Elektrode leitet. Auf der Oberseite des Perowskits befindet sich eine Schicht aus einem organischen Lochleiter, der die Löcher zur oberen Elektrode transportiert.

„Die vielen unterschiedlichen Schichten in der Solarzelle sind extrem wichtig. Sie stellen die effiziente Trennung zwischen den beiden Ladungsträgern sicher“, ergänzt Bergers Kollege Stefan Weber. „Allerdings müssen die Ladungsträger jedes Mal, wenn sie von einem Material ins andere übergehen, eine kleine Barriere überwinden. Diese Barrieren wirken wie eine Baustelle auf einer stark befahrenen Autobahn, an der sich die Fahrzeuge zurückstauen. Dieser Ladungsstau in der Solarzelle führt zu Verlusten und damit zu einer niedrigeren Effizienz.“

Löcher stauen sich auf dem Weg

Um den Ladungstransport innerhalb der Solarzelle zu beobachten, haben die Mainzer Wissenschaftler die Zelle in der Mitte durchgebrochen und die Bruchstelle mit einem fein fokussierten Ionenstrahl glatt poliert. Mit der feinen Spitze eines Rasterkraftmikroskops konnten sie die Schichtstruktur mit einer Auflösung von wenigen Nanometern abbilden. Zusätzlich verwendeten sie die Kelvinsondenmikroskopie, die gleichzeitig mit der Messung der Oberflächenstruktur das elektrische Potential unter der Spitze abtastet. Aus der Potentialverteilung konnten die Forscher dann Rückschlüsse auf die Feldverteilung und damit den Ladungstransport durch die verschiedenen Schichten der Zelle ziehen.

Anzeige

In mehreren Messreihen stellten die Forscher fest, dass sich die lichtabsorbierende Perowskitschicht unter Beleuchtung stark positiv auflädt. Als Grund vermuten sie, dass der Elektronenleiter Titandioxid seine Aufgabe deutlich wirkungsvoller als der Lochleiter erledigt. Die Löcher erreichen ihre Elektrode nicht so schnell wie die Elektronen, sie stauen sich auf dem Weg. Durch den Überschuss an positiven Ladungen in der Perowskit-Schicht baut sich ein Gegenfeld auf, das den Transport der Löcher zusätzlich bremst.

„Wir konnten die Ladungsverteilung innerhalb der Zelle erstmals in genauen Zusammenhang mit den einzelnen Schichten bringen“, sagt Rüdiger Berger. „Der Ladungsstau der positiven Ladungen in der Perowskitschicht beim Einschalten des Lichts sagt uns, dass der Transport durch den Lochleiter derzeit den Flaschenhals für die Effizienz der Solarzelle darstellt.“ Die Beobachtungen der Mainzer Forscher können helfen, die Wirkungsgrade der Perowskit-Solarzellen auf über 20% zu erhöhen, womit sie dann eine echte Konkurrenz zu den etablierten Silizium-Solarzellen darstellen würden.

(Max-Planck-Institut für Polymerforschung, 24.09.2014 – AKR)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Fusionsplasma

37 Millionen Grad im Fusionsplasma

Voyager 1 sendet wieder

„Anti-Aging-Geheimnis“ der Geiseltal-Frösche gelüftet

Video: Flug über einen außerirdischen Lavasee

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Sonnige Aussichten - Wie Klimaschutz zum Gewinn für alle wird von Franz Alt

Erneuerbare Energie - von Thomas Bührke und Roland Wengenmayr

Top-Clicks der Woche