• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 21.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Ein Grenzflächensupraleiter, der sich wie ein Hochtemperatursupraleiter verhält

Universität Augsburg

Bei der Untersuchung einer elektrisch leitfähigen und bei tiefsten Temperaturen sogar supraleitfähigen Grenzschicht, die sich zwischen zwei elektrisch isolierenden Oxiden bildet, haben Physiker des Zentrums für Elektronische Korrelationen und Magnetismus (EKM) der Universität Augsburg und des MPI für Festkörperforschung Stuttgart zusammen mit Kollegen der Cornell University, der Stanford University und des Paul Scherrer Instituts (Villingen/Schweiz) herausgefunden, dass die Supraleitung dieser Schicht vom Verhalten konventioneller Supraleiter entscheidend abweicht, um zugleich dem Verhalten von Hochtemperatursupraleitern zu ähneln. Wie das renommierte Wissenschaftsjournal Nature jetzt im Vorgriff auf seine kommende Print-Ausgabe online berichtet, könnten diese Erkenntnisse dazu beitragen, Lücken im bisherigen Verständnis der Hochtemperatursupraleitung zu schließen.
Die elektrische Leitfähigkeit in Metallen wird durch einzelne Elektronen getragen. Wenn diese gegeneinander stoßen, führt ihre Reibung, die dem elektrischen Widerstand entspricht, dazu, dass ein stromdurchflossener Draht sich erwärmt. Dieser Energieverlust stellt ein enormes Problem beim Stromtransport dar. Die Versorgung entfernter Netze mit Strom aus Offshore-Windparks ist ein aktuelles Beispiel hierfür.

Vor gut hundert Jahren hat man entdeckt, dass in vielen Metallen bei sehr tiefen Temperaturen von -250°C bis -273°C die den Widerstand bzw. Energieverlust verursachende Reibung vollständig verschwindet, sie werden „supraleitend“. Grund hierfür ist der Umstand, dass die Elektronen sich unterhalb einer materialspezifischen Sprungtemperatur nicht mehr einzeln, sondern kohärent als Kollektiv bewegen. Dieses kollektive Verhalten lässt sich messtechnisch auch in der Energieverteilung der Elektronen nachweisen. Die kohärenten Elektronen hinterlassen in dieser Verteilung eine charakteristische Lücke.

Oberhalb der Sprungtemperatur


Solch eine Energielücke haben die Augsburger Physiker und ihre Kollegen mittels Tunnelspektroskopie und eines eigens entwickelten Bauelements (siehe Abbildungen) nun an einer Oxid-Grenzfläche zwischen Strontiumtitanat und Lanthanaluminat nachgewiesen. Überraschend dabei war, dass diese Energielücke - im Widerspruch zur gängigen Theorie der Supraleitung - nicht nur unterhalb, sondern auch noch einige zehntel Grad über der Sprungtemperatur von 0,2 Kelvin (-272,9°C) messbar war.

Eigenartiges Verhalten der Energielücke


Ein ganz ähnliches Verhalten kennt man jedoch von den
sogenannten Hochtemperatursupraleitern, deren Sprungtemperaturen von bis zu -140°C man bereits mit flüssigem Stickstoff erreichen kann. Hochtemperatursupraleiter wurden vor gut 25 Jahren entdeckt, sie werden seither intensiv erforscht und finden auch schon zahlreiche technische Anwendungen. Wissenschaftlich sind sie allerdings noch immer nicht vollständig verstanden. Vor allem das eigenartige Verhalten der Energielücke, das sogenannte „Pseudogap“, gibt nach wie vor Rätsel auf.

In Richtung Zimmertemperatur ...


"Dass wir dieses eigenartige Verhalten von Hochtemperatursupraleitern nun auch in einem völlig anderen System entdecken konnten", meint Dr. Christoph Richter vom Augsburger EKM, "kann u. U. entscheidend dazu beitragen, die Lücken im Verständnis der Hochtemperatursupraleitung zu schließen und die zugrundeliegende Physik zu verstehen, um darauf aufbauend neue, bessere Materialien entwickeln zu können. Trotz seiner vergleichsweise winzigen Sprungtemperatur könnte der von uns untersuchte ungewöhnliche Grenzflächensupraleiter also dazu beitragen, die Sprungtemperatur zukünftiger Materialien weiter in Richtung Zimmertemperatur zu treiben."
(Nature, 2013; doi: 10.1038/nature12494)
(Universität Augsburg, 08.10.2013 - KSA)
 
Printer IconShare Icon